Volver al curso

Hola, si te dan un esquema donde una flecha es más pequeña que la otra sí, podrías inferirlo. Pero yo cuando hice el esquema no lo sabía. Aunque si vemos que la carreta avanza hacia la derecha, es porque efectivamente la fuerza resultante apunta hacia la derecha. Ojo, si la fuerza de rozamiento y la fuerza F fueran iguales también podría estar avanzando la carreta, pero a velocidad constante.
0
Responder
ah okey.. muchas gracias profe
0
Responder
@Celeste Hola Celes, veamos, si planteas ese teorema vemos que acá la variación de la energía mecánica es lo mismo que la variación de la energía cinética, dado que la variación de la energía potencial te da cero porque no hay cambios de altura. Por otra parte, el trabajo de las fuerzas no conservativas es igual a la suma de los trabajos que hacen al fuerza que del caballo que empuja la carrera y a la de rozamiento. Vos la de rozamiento no la sabés. :S
Entonces es fácil calcular primero lo que te van pidiendo, primero la energía cinética porque tenés los datos para calcularla, después el trabajo de la fuerza de empuje del caballito y después la de rozamiento
0
Responder
Cuando tenés que calcular la fuerza, acá solamente calculamos el trabajo de esa fuerza, entonces no hace falta descomponerla, porque ya con tener su valor (módulo) y el ángulo que forma con el desplazamiento podés calcularlo.
0
Responder
Listo profe se entendió muchas gracias
0
Responder
@Jeanpier El trabajo de la fuerza resultante (sí, de sumar los trabajos de todas las fuerzas que actúan sobre el cuero -y que hacen trabajo lógicamente-) es igual a la variación de energía cinética.
0
Responder
@Lua JAJAJAJAJAJA NI IDEAA!! Qué loco que nadie me avisó, se ve que algo hice mal y no me di cuenta al editar el video! El resultado correcto es 24.148 J.
0
Responder
ahh jaja muchas gracias, cosas que pasan
0
Responder

Video Player is loading.
24
Acerca del video
ATENCIÓN: En el pizarrón se copia 30°, pero el ángulo es de 15 y se resuelve con este último valor.Al calcular el LF (ítem b) el resultado es 24.148 JPrograma
Unidad 1 - Mecánica
-
CINEMÁTICA
-
Movimiento Rectilineo Uniforme - MRU✨ -
Movimiento Rectilineo Uniforme - MRU - Ejemplo de aplicación✨ -
La clave de esta materia: Conversión de unidades -
Ejercicio - MRU - Análisis de gráfico x(t). Cálculo de velocidad, cálculo de la posición y armado de gráfico v(t). -
Ejercicio - MRU - Análisis de gráficas de posición en función del tiempo: x(t) -
Ejercicio - MRU - Analicemos e identifiquemos MRUs a partir de diferentes gráficas x(t). -
Ejercicio - MRU - Analicemos e identifiquemos MRUs a partir de diferentes gráficas v(t). -
Ejercicio - MRU - Análisis del movimiento -
Movimiento Rectilíneo Uniformemente Variado - MRUV✨ -
Ejercicio - MRUV y MRU ¿Cómo identificar los movimientos en gráficas de posición en función del tiempo -
Ejercicio - MRUV y MRU - Análisis de gráficas de velocidad en función del tiempo -
Ejercicio - MRUV - Análisis completo del movimiento, uso de ecuaciones horarias y creación y análisis de gráficas x(t), v(t) y a(t). -
Ejercicio - Creación de gráficos de a(t) y x(t) a partir del gráfico de v(t). -
Ejercicio - Gráficos de v(t). Diferencia entre velocidad y rapidez. Importancia del sistema de referencia (SR) -
Ejercicio - Análisis de gráficos de v(t) y x(t). Desplazamiento y velocidad media. -
Ejercicio - Integrador de MRU y MRUV. Ecuaciones horarias y gráficas x(t), v(t) y a(t). -
Ejercicio - Encuentro de dos móviles. MRU y MRUV -
Ejercicio - Integrador - MRU y MRUV de un ascensor I -
Ejercicio - Integrador - MRU y MRUV de un ascensor II -
Caída Libre - Tiro Vertical✨ -
Ejercicio - Integrador tiro vertical. Ecuaciones horarias. -
Ejercicio - Tiro vertical. Análisis de gráficas y(t), v(t) y a(t) -
Ejercicio - Caída libre de una piedra. Ecuaciones horarias. Gráfica v(t). -
Ejercicio - Comparamos dos tiros verticales -
DINÁMICA
-
Leyes de la Dinámica, cortito y al pie 😉 -
Ejercicio - Repaso de MRU combinado con dinámica -
Ejercicio - Repaso de MRUV combinado con dinámica -
Ejercicio - Repaso de MRUV combinado con dinámica para un tren que se desplaza -
Ejercicio - Aplicación de la segunda ley de la dinámica a un cuerpo que asciende por la tensión de un soga -
TRABAJO, ENERGÍA Y POTENCIA
-
Trabajo de una fuerza💪 -
Energía y tipos de energía (cinética, potencial y mecánica)⚡ -
Ejercicio - Cálculo del trabajo con fuerzas aplicadas en diferentes direcciones -
Ejercicio - Aplicación de los teoremas Trabajo-Energía Cinética y Trabajo-Energía Mecánica -
Ejercicio - Aplicación del teorema de Trabajo-Energía a un auto que frena -
Ejercicio - Resolución combinada de dinámica y cinemática para el auto que frena -
Ejercicio - Integrador. Trabajo y energía -
Potencia - Ejercicio - Levantador de pesas -
Ejercicio - Gráfico de la fuerza resultante en función de la posición, y su relación con el trabajo -
Ejercicio - Trabajo de la fuerza resultante a partir del gráfico Fres(x) -
Ejercicio - Análisis de gráficas Fres(x) -
Ejercicio - Conservación de la energía mecánica - Esquiador que baja la montaña -
Ejercicio - Ejercicio de tiro vertical - Gráficos de energía -
Descomposición de fuerzas - Trigonometría - Ejemplo 1 -
Ejercicio - Fuerzas conservativas y no conservativas - Aplicación del teorema de conservación de la energía -
Descomposición de fuerzas - Trigonometría - Ejemplo 2 -
Ejercicio - Cálculo de fracción de energía mecánica perdida -
Ejercicio - Plano inclinado - Repaso de trabajo, fuerzas y energía -
Potencia💪 -
Ejercicio - Gráfico de potencia instantánea vs t
Unidad 2 - Bases físicas de la circulación y de la respiración
-
HIDROSTÁTICA
-
Introducción a los fluidos. Presión, densidad y sus unidades.
-
Teorema General de la Hidrostática✨
-
Presión absoluta y manométrica o relativa
-
Teorema General de la hidrostática - Cuándo usar cada fórmula
-
Principio de Pascal✨ - Prensa hidráulica
-
Ejercicio - Unidades de presión
-
Ejercicio - Cálculo de presión
-
Ejercicio - Prinicipio de Pascal - Prensa hidráulica que levanta un auto
-
Ejercicio - Fuerza mínima que hay que aplicar al inyectar un fluido en una vena
-
Ejercicio - Aplicación del teorema general de hidrostática para el cálculo de la presión en un punto
-
Ejercicio - Aplicación del teorema general de la hidrostática para el cálculo de la altura
-
Ejercicio - Aplicación del teorema general de la hidrostática para el cálculo de la presión en diferentes puntos
-
Ejercicio - Tubo en forma de U
-
HIDRODINÁMICA DE FLUIDOS IDEALES
-
Introducción a los fluidos ideales. Ecuación de continuidad
-
Caudal en ramificaciones
-
Ejercicio - Análisis de la velocidad media de un fluido en función de la sección por la que circula
-
Ejercicio - Árbol circulatorio. Ejercicio integrador
-
Ejercicio - Análisis del caudal y velocidad en un caño que se ramifica
-
Principio de Bernoulli ✨
-
Casos donde vamos a aplicar el Principio de Bernoulli
-
Ejercicio - Aplicación de Bernoulli a una tubería que desciende y aumenta su sección
-
Ejercicio - Aplicaciones de Bernoulli a fenómenos cotidianos (teórico)
-
Ejercicio - Aplicación de Bernoulli a un tubo horizontal que se reduce su sección
-
Ejercicio - Aplicación de Bernoulli a un tubo horizontal que se aumenta su sección
-
Ejercicio - Aplicación de Bernoulli a un tanque que se vacía
-
Ejercicio - Ejercicio integrador. Hidrostática e hidrodinámica
-
Ejercicio - Aplicaciones de Bernoulli a un sistema sifón
-
Ejercicio - Aplicación de Bernoulli a una tubería que se ramifica
-
Ejercicio - Aplicación de Bernoulli a una tubería que se ramifica y que vuelve a unirse
-
HIDRODINÁMICA DE FLUIDOS REALES 👑
-
Fluidos Reales o Viscosos - Ley de Pouiselle✨
-
Ejercicio - Diferencia de presión en fluidos ideales y fluidos reales
-
Ejercicio - Diferencia de presión en un tubo horizontal de secciones variables
-
Ejercicio - Análisis del efecto de la resistencia hidrodinámica y Bernoulli en un fluido real (teórico)
-
Ejercicio - Relación entre resistencias hidrodinámicas en función de las secciones
-
Ejercicio - Análisis de la variación de presión si se reemplaza un caño por otro de dimensiones diferentes
-
Ejercicio - Aplicación de la Ley de Ohm hidrodinámica al sistema vascular
-
Resistencia hidrodinámica equivalente. Arreglos o configuraciones en serie y en paralelo✨
-
Ejercicio - Cálculo de resistencia equivalente para diferentes arreglos de resistencias
-
Ejercicio - Asociación de resistencias y análisis ante variaciones de sus componentes
-
Ejercicio - Aplicación médica de la asociación de resistencias
-
Cálculo de la potencia en fluidos
-
Ejercicio - Cálculo del trabajo y potencia requeridos para bombear un fluido
-
Ejercicio - Relación del caudal en un sistema en paralelo y otro en serie
-
GASES Y HUMEDAD
-
Introducción a gases ideales. Conceptos básicos y unidades
-
Gases Ideales - Ecuación General de Estado - Ley de Dalton✨
-
Ejercicio - Aplicación de la ecuación de estado de los gases ideales
-
Ejercicio - Aplicación de la ecuación de estado para dos situaciones a T constante
-
Ejercicio - Aplicación de la ecuación de estado para dos situaciónes a P constante
-
Ejercicio - Mezcla de gases (aire) y cálculo de las presiones parciales
-
Ejercicio - Cálculo de los moles de gas en una mezcla
-
Ejercicio - Uso del diagrama de fases del agua
-
Humedad y diagrama de estado del agua
-
Ejercicio - Análisis de la presión de vapor de saturación
-
Ejercicio - Cálculo de la humedad absoluta y humedad relativa
-
Ejercicio - Análisis de la humedad de una masa de aire que se calienta
-
Ejercicio - Integrador. Gases y humedad
-
DIFUSIÓN Y ÓSMOSIS
-
Fenómenos de transporte - Conceptos previos
-
Fenómenos de transporte - Difusión - Ley de Fick✨
-
Fenómenos de transporte - Ósmosis✨
-
Ejercicio - Cálculo de la molaridad y osmolaridad para una solución de azúcar (sacarosa)
-
Ejercicio - Dilución de soluciones
-
Ejercicio - Cálculo de la molaridad y osmolaridad para una solución de sal binaria (NaCl)
-
Ejercicio - Difusión. Cálculo de la concentración de la solución diluida
-
Ejercicio - Difusión. Cálculo de la densidad de flujo y el flujo difusivo
-
Ejercicio - Ósmosis. Análisis de la altura de equilibrio
-
Ejercicio - Cálculo de la presión osmótica
-
Ejercicio - Cálculo de la osmolaridad y presión osmótica del plasma de la sangre
-
Ejercicio - Cálculo de la presión osmótica de soluciones isotónicas
Unidad 3 - Termodinámica
-
CALORIMETRÍA
-
Calor y temperatura. Ecuación general de la calorimetría.
-
Ejercicio 1
-
Ejercicio 2
-
Ejercicio 3
-
Ejercicio 4
-
Ejercicio 5
-
Ejercicio 6
-
Ejercicio 7
-
TRANSMISIÓN DE CALOR
-
Formas de transmisión de calor: conducción, convección y radiación☀️
-
Ejercicio - Conducción. Cálculo de la longitud de una barra que intercambia calor
-
Ejercicio - Conducción. Cálculo del flujo de calor
-
Ejercicio - Radiación. Calculo del flujo de calor
-
Ejercicio - Calorimetría y cálculo de la potencia requerida
-
PRIMER PRINCIPIO DE LA TERMODINÁMICA
-
Primer Principio de la termodinámica, cortito y al pie
-
Ejercicio 1 - Equivalente mecánico del calor - Experimento de Joule
-
Ejercicio 2
-
Evoluciones reversibles de gases ideales
-
Ejercicio 3
-
Ejercicio 4
-
Ejercicio 5
-
Ejercicio 6
-
Ejercicio 7
-
Ejercicio 8
-
Máquinas térmicas y frigoríficas
-
Ejercicio 9
-
Ejercicio 10
-
SEGUNDO PRINCIPIO DE LA TERMODINÁMICA
-
Entropía
-
Cálculos de Entropía
-
Ejercicio 1
-
Ejercicio 2
-
Ejercicio 3
-
Ejercicio 4
-
Ejercicio 5
-
Ejercicio 6
Unidad 4 - Bases físicas de los fenómenos bioeléctricos
-
ELECTROSTÁTICA
-
Ley de Coulomb
-
Campo eléctrico
-
Ejercicio - Representación de líneas de campo
-
Diferencia de potencial
-
Ejercicio 2
-
Ejercicio 3
-
Ejercicio 4
-
CAPACITORES
-
Capacitores
-
Ejercicio 1
-
Ejercicio 2
-
Ejercicio 3
-
Ejercicio 4
-
Ejercicio 5
-
ELECTRODINÁMICA
-
Ley de Ohm
-
Asociación de resistencias
-
Ejercicio 1
-
Ejercicio 2
-
Ejercicio 3
-
Ejercicio 4
-
Ejercicio 5
-
Instrumentos de medición
-
Ejercicio 6
-
Ejercicio 7
ExaComunidad
Iniciá sesión o Registrate para dejar
tu
comentario.

13 de septiembre 5:38
2:35, el resultado es 24.146.
(dejando de lado el error de segundos del resultado en 16,070)
por qué en COS de 15 y no 30, que es el dato que dieron?
(dejando de lado el error de segundos del resultado en 16,070)
por qué en COS de 15 y no 30, que es el dato que dieron?

11 de mayo 18:19
profe como me doy cuenta que la f roz es menor que la fx ? ya que hizo el vector de f roz de menor longitud

Julieta
PROFE
15 de mayo 12:51

15 de mayo 16:46

Celeste
25 de abril 18:57
Hola profe una consulta, porque este ejercicio no se resuelve como el anterior que es L f no cons= variacion de la energia mecánica? Al principio lo hice sola y lo resolvi asi y no me dio, desp vi el video y se resuelve de otra forma, no entendi porque, es porque si el caballo avanza actuan mas fuerzas?

Julieta
PROFE
29 de abril 13:15
Entonces es fácil calcular primero lo que te van pidiendo, primero la energía cinética porque tenés los datos para calcularla, después el trabajo de la fuerza de empuje del caballito y después la de rozamiento

10 de abril 15:18
profe y en que momento se descompone la fuerza .. yo pensé que se tenia que descomponer la fuerza

Julieta
PROFE
11 de abril 4:03
Ahora bien, típico ejercicio donde se descompone la fuerza (por ej la fuerza peso), es en plano inclinado

12 de abril 5:04

Jeanpier
24 de septiembre 23:08
Profe tengo una duda, entonces si sumamos todos los trabajos del cuerpo nos daría igual a la diferencia de Energía cinética.

Julieta
PROFE
3 de octubre 21:09

Julieta
PROFE
3 de abril 17:43

lua
4 de abril 13:10